
Pd-L2Ork Raspberry Pi Toolkit as a Comprehensive
Arduino Alternative in K-12 and Production Scenarios

Ivica Ico Bukvic, D.M.A.

Virginia Tech
Institute for Creativity, Arts, and

Technology
Blacksburg, VA, USA

 ico@vt.edu

ABSTRACT
The following paper showcases new integrated Pd-L2Ork system
and its K12 educational counterpart running on Raspberry Pi
hardware. A collection of new externals and abstractions in
conjunction with the Modern Device LOP shield transforms
Raspberry Pi into a cost-efficient sensing hub providing Arduino-like
connectivity with 10 digital I/O pins (including both software and
hardware implementations of pulse width modulation) and 8 analog
inputs, while offering a number of integrated features, including
audio I/O, USB and Ethernet connectivity and video output.

Keywords
Pd-L2Ork, Raspberry Pi, Toolkit, Arduino Alternative, K-12

1. BACKGROUND
Since its introduction, Raspberry Pi (RPi) [1] platform has gathered a
sizable following. Arguably a part of its charm is in that it offers a
comprehensive operating system in a form of Linux [2] builds with a
variety of preinstalled software packages, such as PdPi [3] and
Satellite CCRMA [4], with onboard USB, Ethernet, audio, and video
connectivity, as well as general-purpose input/output (GPIO) pins for
interfacing with a broad array of equipment and sensors. Even
though it is priced competitively to similarly equipped Arduino
boards [5], its more widespread adoption in informal learning
environments, such as Maker workshops, where it could serve as a
viable alternative to the Arduino platform has been conspicuously
slow. This slump may be primarily attributed to the lack of legible
and easy access to individual GPIO channels and platform’s inability
to seamlessly interface with analog sensors.

2. RPi SHIELDS TO THE RESCUE
To address the aforesaid deficiency, we’ve seen an introduction of a
number of third party accessories and shields. The most cost-efficient
are the bridging interfaces between the GPIO and various breadboard
configurations, e.g. Adafruit’s prototyping accessories [6].
Intermediate solutions consist primarily of integrated shields whose
focus is on easier access to digital pins and/or additional dedicated
analog inputs, such as the Modern Device LOP [7]. Some go as far
as to provide a comprehensive, albeit costly Arduino-like
functionality built on top of RPi’s GPIO [8].
 The two lingering challenges associated with the aforesaid third
party solutions is their inherent cost that often exceeds that of RPi
itself, as well as lack of an integrative programming environment that

can harness the full potential of RPi’s connectivity. The cost
predicament once again places such solutions in the dubious realm
particularly in respect to providing Arduino functionality. This is not
to suggest Arduino solutions need to be supplanted—there are
undoubtedly scenarios where RPi’s added functionalities and
consequently their cost overhead are unnecessary. It appears, despite
the ability to utilize such integrative environment in conjunction with
built-in onboard A/V functionality through a comprehensive
operating system that also supports a variety of programming
environments to interface with peripherals, RPi’s usability remains
hampered by the lack of the aforesaid comprehensive access to
digital and analog sensors.
 The second challenge of the RPi+shield solutions is ability to
seamlessly integrate the aforesaid connectivity through a single,
ideally comprehensive development environment. This problem has
been in part addressed through projects like Python GPIO module
(RPi.GPIO) [9] that provides comprehensive access to GPIO
infrastructure but suffers from limited audio functionality of the
python environment, and Miller Puckette’s RPi port [10] of the
ubiquitous Pure-Data real-time visual programming environment
[11] that provides only basic sysfs access to GPIO pins. The solution,
while providing access to audio and to a lesser extent video, falls
short by offering only low speed access to GPIOs via sysfs filesystem
[12]. This precludes a high speed GPIO communication
consequently preventing access to pulse width modulation (PWM)
[13], beyond the single pin with hardware PWM implementation that
remains accessible through sysfs. More importantly, the existing
implementation provides no simple way of interfacing with analog
sensors whose varying voltage requires an analog-to-digital (A/D)
converter [14].
 It is therefore becoming increasingly apparent that a number of
hurdles remain for RPi to be considered a board capable of serving as
an Arduino replacement in a broad array of scenarios, with particular
focus on interactive multimedia art and installations: the lack of easy
access to GPIOs, an ability to interface with analog sensors, a
comprehensive integrative software development environment, and
an ability to achieve this at a competitive price point.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Figure 1. Pd-L2Ork K-12 module demo patch.

3. INTRODUCING PD-L2ORK FOR RPI
Pd-L2Ork [15] is a Pure-Data variant. Originally introduced as the
audio-visual foundation for Virginia Tech’s Linux Laptop Orchestra
(L2Ork) [15][16], it has since grown into a project of its own with a
comprehensive set of new features and bug fixes. More recently, it
has been extended with a K-12 educational module [17] (Figure 1),
enabling its use in a number of informal learning scenarios, including
a three-year partnership with the Boys & Girls Club of Southwestern
Virginia [17] and two Maker workshops [18]. The philosophy
behind the project is the focus on usability and turnkey solutions,
particularly when it comes to K-12 learning environments where the
fault tolerance threshold is particularly low. This is also reflected in
K-12 modules seamless integration of connectivity with various
controllers, such as Nintendo Wiimotes [19] and Arduino boards
using SARCduino firmware [20]. The latest addition to the Pd-
L2Ork ecosystem is the RPi build that, in addition to supporting RPi-
Arduino connection, also includes comprehensive access to RPi’s
GPIOs and with the addition of the MCP3008 A/D converter analog
inputs.

3.1 Shield
The Pd-L2Ork implementation relies on a more comprehensive
intermediate approach to RPi shields, namely a relatively affordable
Modern Device LOP (NOP version) shield (Figure 2), providing
easy access to 10 digital I/O pins, as well as 8 analog inputs using
integrated MCP3008 A/D converter. Although the same is easily
achievable through the use of a breadboard, the attention here is on
an integrated approach that shifts focus away from dealing with
rudimentary wiring towards more robust error-safe solutions ready
for both introductory informal learning environments and real-world
production-level implementations. Latter in particular require a level
of stability and reliability that is difficult to achieve with prototyping
hardware, such as breadboards. The said LOP board offers a few
additional convenience features, like the co-located and labeled
ground, power, and GPIO pins, increased current throughput of
approx. 300mA instead of the usual 30mA (thus allowing for
interfacing with elements that require greater power draw, provided
RPi is supplied adequate power via a dedicated USB power supply),
and perhaps most importantly protection from short circuiting the
board due to faulty wiring which is also reflected by a subtle surface-
mounted light emitting diode (LED).
 Another notable feature of the NOP variant of the LOP shield is
ability to immediately access GPIO 4 pins using 4 microswitches on
the right. This can be handy in providing a simple access and
configuration interface in headless situations, as well as an ability to
test the connectivity without any additional sensors. In addition to co-
located per-pin access to 3.3V, as is the case with other shields, LOP
exposes one auxiliary 5V pin directly off the GPIO connector (the
top-left pin on the Figure 2).

3.2 Pd-L2Ork Externals
The software implementation relies upon two externals: disis_gpio
and disis_spi. The prefix “disis_” is used to distinguish this
implementation from other externals bearing similar name and
purpose.

3.2.1 disis_gpio
disis_gpio (Figure 3) external is in part based on the WiringPi library
[21], reimplementing PWM code to allow for dynamic instantiation
of supporting timing threads. For other aspects of GPIO connectivity,
disis_gpio statically links against the WiringPi library to allow for an
easily transportable monolithic external. The object aims to capture
the basic sysfs style connectivity with individual gpios, using
Raspberry Pi’s original pin numbering scheme. It is only available if
Pd-L2Ork is run with sudo privileges. This is because PWM
functionality requires faster access to the device than what sysfs
interface offers and is only possible through direct reads and writes to
device’s physical memory. If Pd-L2Ork is started without sudo
privileges, the object will fail to create and will output an error in the
console together with a suggested solution. Starting external on a
computer without the necessary hardware will also generate a
console error and terminate external instantiation. Before being able
to use this external, the system needs to load gpio driver by issuing
the following command:

 sudo modprobe gpio

Alternately, “gpio” can be added on the last line of the /etc/modules
system file which will ensure that the driver is automatically loaded
when the system boots.

To enable a gpio pin in digital (non-PWM) mode user needs to:

1. export the desired pin (or identify it using optional creation

argument)
2. specify pin’s data direction (in vs. out; can be changed at any time)
3. open the pin
4. use “bang” or a metro object to retrieve pin value at a desired

interval OR send values 0 or 1 to the pin to set its output value

disis_gpio will output connection status through the right inlet and
data values through the left inlet (when using input mode). RPi has
one hardware PWM-enabled pin (18). Its functionality can be
accessed using “togglepwm” message (available only when in output
mode) after which sending values between 0 and 1023 using the
“pwm” message will determine PWM behavior (1023 being 100%
on and 0 being off). The selected ranges are designed to correspond
with Arduino’s default behavior as per SARCduino’s firmware [20]
to allow for near-seamless transition between the two devices. This is
particularly important as Pd-L2Ork also offers seamless integration
with Arduino boards using the aforesaid firmware both in default and
K-12 modes.

Figure 2. Raspberry Pi with a LOP shield (NOP variant).

Figure 3. disis_gpio external help file.

 The software PWM implementation supports all pins, including the
aforesaid pin 18 mainly due to discrepancy between the software and
hardware implementation. Latter offers logarithmic scaling of values
and consequently a much finer grained control in the lower range that
is impossible to replicate in software without requiring an
impractically high CPU overhead. The software implementation
therefore utilizes a hardwired 1000Hz pulse, providing a reasonably
high resolution made possible by spawning a separate high-priority
clock thread with direct access to device’s memory. In this version,
however, LEDs tend to light up almost immediately at a value of 1
and continue to gradually increase in brightness up until the value
1023. Due to the ensuing scaling discrepancy, mixing software and
hardware iterations of PWM is not advised. Consequently, all 10
GPIO channels can be used for PWM-based analog sensors, as well
as digital I/O.
 When closing a pin, one can issue a “close” message, followed by
an “unexport” message. Alternately, the same can be accomplished
by simply immediately invoking the “unexport” command—the rest
will be taken care of automatically by the external. Additional built-in
checks ensure that the proper pin closing steps are taken when
abruptly deleting object, or in other similarly extreme situations, to
ensure that the overall environment remains stable and unaffected by
the unusual course of action.

3.2.2 disis_spi
disis_spi (Figure 4) complements disis_gpio by allowing users to
easily interface with the LOP’s onboard MCP3008 A/D converter. It
takes its name from the underlying driver that needs to be loaded
before MCP3008’s inputs can be registered and accessed. The code
borrows from a number of examples found online and consolidates
them into a comprehensive Pd-L2Ork external. Like disis_gpio,
disis_spi relies upon kernel drivers that are not loaded by default. To
load them manually, we need to issue the following commands:

 sudo modprobe spi-bcm2708
 sudo modprobe i2c-bcm2708

Alternately, said drivers can be once again added to the /etc/modules
system file by listing them one driver name per line to ensure that
they are automatically loaded on system boot. It is worth noting that
some builds deliberately blacklist aforesaid drivers, preventing them
from loading under any conditions. To fix this, simply remove them
from the /etc/modprobe.d/raspi-blacklist.conf file.
 Given the uniform nature of the incoming data stream, the external
is considerably simpler than disis_gpio—the initialization is a simple
2-step process:

1. open default device /dev/spidev0.0 (or specify alternative one)
2. send “bang” or use metro to retrieve current values which are

outputted through outlets corresponding to 8 channels/pins

As is the case with disis_gpio, the rightmost (9th) outlet shows
connection status, with 1 being open and 0 being closed. To close the

device simply send a “close” message. Once again, the individual
channel data conforms to the aforesaid 0-1023 range.
 Consequently, disis_spi when coupled with the MCP3008 A/D
converter provides connectivity with up to 8 analog sensors and
devices. Taking into an account the additional 10 GPIO-based
channels capable of PWM, the ensuing RPi+LOP shield offers a
compelling Arduino alternative.

3.3 Applicability
Even though the externals have been conceived primarily with Pd-
L2Ork and Modern Device NOP variant of the LOP shield in mind,
they are compatible with the vanilla Pure-Data [11] environment and
other vanilla-centric forks (e.g. Pd-Extended [22]). More so, both
externals should be capable of interfacing with any other breadboard-
based approach to accessing either GPIO or inputs from the
MCP3008 A/D converter.

4. TESTS AND CONCLUSIONS
Each software PWM thread with runtime updates generates around
2% CPU overhead on a Rev. 2 RPi board suggesting a maximum of
20% of CPU for 10 software PWM instances running concurrently.
The actual overhead will vary depending on the rate of change.
 While the RPi+shield combo is relatively affordable (est. $35 and
$23, respectively), it is still almost double the price of an Arduino
Uno (est. $30). Hence, despite the added sensor connectivity (10
PWM-enabled GPIO channels and 8 analog channels), the newfound
gadget’s true potential will be likely in scenarios that call for access
to a comprehensive operating system, specific toolkits (e.g. Pd-
L2Ork), and/or RPi’s added connectivity (e.g. audio I/O and video).
Apart from unique advantages, such as the aforesaid comprehensive
operating system and a relatively broad choice of development tools
that in certain scenarios may prove sufficient in rationalizing the cost
difference, in projects requiring direct access to audio and video, the
Arduino price advantage quickly dissolves due to the cost of the
supporting accessories needed to provide proper audio (e.g. Wave
shield [23]; est. $22), and/or video I/O (e.g. Video Game Shield
[24]; est. $23).

5. REAL-WORLD IMPLEMENTATIONS
The newfound environment served as the backbone of Virginia Tech
Institute for Creativity, Arts, and Technology (ICAT) Maker
workshop that took place in March 2014. In the summer 2014, the
same will also play a role in our annual multisite K-12 Makkr camp.
Finally, the newfound infrastructure will also serve as a foundation
for a commissioned communal arts installation “Cloud” (in
collaboration with an Artist and Architect Aki Ishida) set to premiere
in Ballston district, Virginia, near Washington D.C. Utilizing 50 RPis
clothed in weather-resistant vessels and equipped with audio I/O
(capture and playback), and light I/O (light/color sensor and LED
array respectively), these artifacts will be in part fashioned and
programmed by community participants using a K-12 variant that
promotes rapid prototyping with minimal learning curve, ultimately
generating a meta-cloud where each individual cloudlet interacts with
each other through sound and light in most unsuspecting ways.

6. FUTURE WORK
The two externals have reached a level of maturity and have been
integrated into a growing library of K12 abstractions that already
offer connectivity with Nintendo Wiimotes and their peripherals
[19], as well as SARCduino implementation of Arduino [16,18].
While the preliminary tests of the newfound current bandwidth made
possible by the LOP shield suggest the board can easily power four
80mA LEDs, additional tests are warranted to determine how many
sensors and emitters can RPi power stably and reliably over a longer
span of time. Finally, a future iteration of disis_gpio may also focus
on implementing the last remaining component—the one-wire-bus
protocol [25]. Figure 4. disis_spi external help file.

7. OBTAINING SOFTWARE
Both externals come prepackaged with Raspberry Pi builds of Pd-
L2Ork, together with supporting documentation. Users can access
externals in the default mode, as well as through a collection of K12
abstractions and their supporting documentation designed to provide
turnkey access to said functionality (Figure 5). Prebuilt deb packages
for the PdPi distribution, and a detailed documentation on how to set
up the system can be found on L2Ork’s website at
http://l2ork.music.vt.edu/main/?page_id=2288. The source can be
retrieved from Pd-L2Ork’s git page [26].

8. ACKNOWLEDGMENTS
The author wishes to acknowledge Virginia Tech Institute for
Creativity, Arts, and Technology for its support of this project,
Newblankets Inc. non-profit organization for sponsoring Raspberry
Pi hardware, and Ballston Business Improvement District non-profit
organization for a commission that inspired this project.

9. REFERENCES
[1] E. Upton and G. Halfacree, Raspberry Pi User Guide.

John Wiley & Sons, 2013.
[2] J. Sanders, “Linux, open source, and software’s future,”

IEEE Softw., vol. 15, no. 5, pp. 88–91, 1998.
[3] “PdPi,” pd-la. .
[4] E. Berdahl and W. Ju, “Satellite CCRMA: A musical

interaction and sound synthesis platform,” in
Proceedings of the International Conference on New
Interfaces for Musical Expression, 2011, pp. 173–178.

[5] M. Banzi, Getting started with Arduino. Beijing;
Cambridge: Make:Books / O’Reilly, 2009.

[6] “Prototyping : Adafruit Industries, Unique & fun DIY
electronics and kits.” [Online]. Available:
http://www.adafruit.com/category/105_163. [Accessed:
26-Jan-2014].

[7] “Lots of Pots (LOP) Board for Raspberry Pi,” Modern
Device. [Online]. Available:
http://moderndevice.com/product/lots-of-pots-lop-board-
for-raspberry-pi/. [Accessed: 26-Jan-2014].

[8] “Raspberry Pi to Arduino Shields Connection Bridge.”
[Online]. Available: http://www.cooking-

hacks.com/raspberry-pi-to-arduino-shield-connection-
bridge. [Accessed: 26-Jan-2014].

[9] “raspberry-gpio-python,” SourceForge. [Online].
Available: http://sourceforge.net/projects/raspberry-
gpio-python/. [Accessed: 29-Jan-2014].

[10] M. Puckette, “Software by Miller Puckette.” [Online].
Available: http://msp.ucsd.edu/software.html.
[Accessed: 26-Jan-2014].

[11] M. Puckette, “Pure Data: another integrated computer
music environment,” Proc. Int. Comput. MUSIC Conf.,
pp. 37–41, 1996.

[12] P. Mochel, “The sysfs filesystem,” in Linux Symposium,
2005, p. 313.

[13] M. Barr, “Pulse width modulation,” Embed. Syst.
Program., vol. 14, no. 10, pp. 103–104, 2001.

[14] R. H. Walden, “Analog-to-digital converter survey and
analysis,” Sel. Areas Commun. IEEE J. On, vol. 17, no.
4, pp. 539–550, 1999.

[15] I. I. Bukvic, T. Martin, E. Standley, and M. Matthews,
“L2Ork : Linux Laptop Orchestra,” in New Interfaces
for Music Expression, Sydney, Australia, 2010, pp. 170–
173.

[16] I. Bukvic, “A Behind-the-Scenes Peek at World’s First
Linux-Based Laptop Orchestra – The Design of L2Ork
Infrastructure and Lessons Learned,” presented at the
Linux Audio Conference, Stanford, California, 2012, pp.
55–60.

[17] I. I. Bukvic, L. Baum, B. Layman, and K. Woodard,
“Granular Learning Objects for Instrument Design and
Collaborative Performance in K-12 Education,” in New
Interfaces for Music Expression, Ann Arbor, Michigan,
2012, pp. 344–346.

[18] B. Sawyer, J. Forsyth, T. O’Connor, B. Bortz, T. Finn,
L. Baum, I. I. Bukvic, B. Knapp, and D. Webster,
“Form, function and performances in a musical
instrument MAKErs camp,” in Proceeding of the 44th
ACM technical symposium on Computer science
education, New York, NY, USA, 2013, pp. 669–674.

[19] C. Kiefer, N. Collins, and G. Fitzpatrick, “Evaluating the
wiimote as a musical controller,” in Proceedings of the
2008 International Computer Music Conference
(ICMC), 2008.

[20] “SARCduino » MuSE.” [Online]. Available:
http://www.musicsensorsemotion.com/2010/03/08/sarcd
uino/. [Accessed: 30-Jan-2014].

[21] “WiringPi.” [Online]. Available: http://wiringpi.com/.
[Accessed: 29-Jan-2014].

[22] “Pd-extended — PD Community Site.” [Online].
Available:
http://puredata.info/community/projects/software/pd-
extended/?searchterm=pd-extended. [Accessed: 08-Feb-
2012].

[23] “Adafruit Wave Shield for Arduino Kit [v1.1] ID: 94 -
$22.00 : Adafruit Industries, Unique & fun DIY
electronics and kits.” [Online]. Available:
http://www.adafruit.com/products/94. [Accessed: 30-
Jan-2014].

[24] “Video Game Shield Kit ID: 311 - $22.50 : Adafruit
Industries, Unique & fun DIY electronics and kits.”
[Online]. Available:
http://www.adafruit.com/products/311. [Accessed: 30-
Jan-2014].

[25] R. D. Lee, “Command/data transfer protocol for one-
wire-bus architecture,” US5809518 A15-Sep-1998.

[26] “pd-l2ork (Pd-L2Ork),” GitHub. [Online]. Available:
https://github.com/pd-l2ork. [Accessed: 29-Apr-2014].

Figure 5. Pd-L2Ork K12 mode RPi analog input object.

