

munger1~: TOWARDS A CROSS-PLATFORM SWISS-
ARMY KNIFE OF REAL-TIME GRANULAR SYNTHESIS

Ivica Ico Bukvic, D.M.A. Ji-Sun Kim Dan Trueman, Ph.D. Thomas Grill
Virginia Tech

Department of Music
DISIS, CCTAD, CHCI

ico@vt.edu

Virginia Tech
Computer Science,

CHCI
hideaway@vt.edu

Princeton University
Department of Music
dan@music.princeton.

edu

University of Music
and Performing Arts,

Vienna
gr@grrrr.org

ABSTRACT

munger1~ is a new and enhanced version of a powerful
Max/MSP real-time granular synthesis external found in
the PeRColate library. Apart from added features and
optimizations, including ability to generate theoretically
unlimited number of grains per second using real-time
input, munger1~ also offers GPL-licensed platform-
transparent code using the flext library. Thus, munger1~
is compatible with both Max/MSP and Pure-Data
without any alterations to the source. Due to object’s
complexity, as well as a significantly less common
porting path from the Max/MSP/C to a platform-
agnostic C++/flext, this project has resulted in a number
of improvements in flext build scripts and supporting
documentation. It has also generated an invaluable list
of caveats which are presented in this paper in hope to
foster more platform-agnostic object design and porting
efforts. Since its release, munger1~ has been featured in
two interactive multimedia creations whose technical
and artistic impact is also addressed in this paper.

1. INTRODUCTION

Originally introduced in 1947 as a theory by Dennis
Gabor [14], sonified by Iannis Xenakis in 1971 [28],
and made real-time by Barry Truax in 1988 [25],
granular synthesis is by no means a new technology.
Yet, in part due to its inherent versatility, granular
synthesis remains a prominent technique in
contemporary digital audio vocabulary. Its recent
adoption into the mainstream audio software, such as
Propellerhead’s introduction of Maelstrom synthesizer
in Reason 2.0 [20], certainly attests to this ongoing
trend.

Late 1990s have introduced proliferation of portable
computing, accessible DSP-oriented programming
languages, and the ensuing popularity of audio-visual
environments geared towards interactivity, most notably
PD/Gem [21, 12] and Max/MSP/Jitter [10]. As a result,
there was a growing need for an integrated real-time
granular synthesis object which would offer balance
between versatility, and ease of use. Although only a
peripheral object of the PeRColate library originally
authored by Dan Trueman and R. Luke DuBios [4, 26,
27], munger~ external to this day remains arguably one
of the most powerful granular synthesis objects for
Max/MSP. PD community quickly realizing the
importance of the PeRColate collection had made a
genuine effort towards a native port. As a result, in 2002

Olaf Matthes had generated a near complete Pure-Data
conversion. Unfortunately, in part due to ongoing
changes in gcc, munger~’s ported code had soon failed
to operate properly, maxing out the CPU usage in a
seemingly random fashion and ultimately producing
garbled and therefore unusable audio output. Another
unfortunate shortcoming of Matthes’s formidable efforts
was the fact that original authors of the PeRColate
library had no resources and/or interest in maintaining
two concurrent code bases, since their work revolved
predominantly around the Max/MSP platform. More so,
multiple #ifdefs in Olaf’s code had made the source
difficult to maintain. For these reasons, Matthes’s
contributions had fallen by the wayside, leaving PD
community without an ability to tap into the vast
potential of the munger~ object.

In 2007, after having an opportunity to attain deeper
understanding of the flext library [16], an effort was
made at Virginia Tech’s newly established Digital
Interactive Sound and Intermedia Studios (DISIS) [13]
to port munger~ to the flext framework and thus make
the object platform-transparent with practically no
added overhead to its code maintenance. Several steps
had to be taken before port could commence, one of
them being permission to redistribute source under a
flext-compatible license, in this case GNU General
Public License [15]. After several days of dealing
mostly with platform-specific idiosyncrasies which were
ironically tied to environment variables otherwise
considered to be platform agnostic, munger1~ 1.0.0 was
released, offering new features and full backwards
compatibility. Since its initial release in March 2007,
the object has seen several updates. Latest version 1.3.1
provides fully modular memory allocation model, code
optimizations, and virtually unlimited number of real-
time grains per second which are restricted only by the
raw CPU power.

2. PORTING CODE OUTSIDE THE BEATEN
PATH

Although flext library is a very stable and mature cross-
platform framework, its adoption has been associated
predominantly with the PD community. As a result,
apart from few exceptions (i.e. fftease [18] port initiated
by the flext author Thomas Grill) most of the porting
efforts have been either from PD to flext, or were new
objects designed entirely within the flext environment
(such as Thomas Grill’s xsample, pool, py, etc., Tim
Blechman’s chaos and tbext, Frank Barknecht’s fluid~,

syncgrain~, etc., all of which are a part of the PD/flext
CVS repository [22]). Consequently, documentation
regarding porting objects from the Max/MSP C-based
source to the flext C++ environment had been sparse.

munger~ is a relatively complex external with its
own concurrently moving and rotating buffer as well as
ability to interface with external buffers. Its latest
version also relies upon the Synthesis Toolkit (STK) in
order to provide ADSR [24] grain envelope. munger~ in
and of itself provides up to sixteen outputs, ability to
specify grain content by manually traversing the current
buffer, accessing random points from the buffer, as well
as read the same in different directions. The object
allows for up to fifty simultaneous grains per sample.
The resulting absolute grain density per second depends
upon grain separation and rate variation (1st and 2nd
inlets respectively), individual grain size and size
variation (3rd and 4th inlets respectively), absolute
minimum allowable grain size (“minsize” message),
and the “delaylength” message (whose size reflects
the size of the moving sub-buffer and consequently
largest possible grain). Grains can be transposed using
random as well as pitch-based transpositions. Each grain
is also spatialized using customizable random deviation.
Unlike stereo spatialization which has its own dedicated
inlet, multichannel diffusion requires “spatialize”
message entry into the leftmost inlet in order to specify
random amplitude deviation and the default channel
amplitude gain.

As can be observed from its features, munger~ has
proven to be a formidable test of flext’s robustness.
Although the initial port was relatively quick, its clean-
up and testing was encumbered by slowdowns
stemming from the platform-specific compiler and
engine peculiarities which for the most part fell outside
flext’s domain.

2.1. Unexpected Caveats

Apart from the expected and relatively well documented
API alterations which were necessary for the code to
conform to the flext framework and thus become
transparent to both Max/MSP and PD], there were
several unexpected considerations whose scope will
likely have a universal impact in other similar
development/porting efforts. They are listed below.

2.1.1. From C to C++

Apart from endless and in most cases dubious argument
which programming language offers better performance,
C++ as an object-oriented environment provides
superior scalability and better memory management
[17]. Although the porting effort was relatively
straightforward, compiler idiosyncrasies had proven to
be the most time-consuming bugs.

One such idiosyncrasy is related to the fact that
Microsoft Visual C++ (a.k.a. MSVC) [19], rather than
Cygwin [11] environment was used on the Windows
platform. rand() function which is often critical

component of algorithmic systems produces different
value range in MSVC (namely 0-32767) from that of
gcc (used by Linux and OSX). As a result an additional
#ifdef was necessary to standardize value range of the
original munger~ object across platforms:

#ifndef __GNUC__
#define RANDOM (rand())
#else
#define RANDOM (random()%32768)
#endif

2.1.2. flext, SndObj, and STK

flext has an inherent ability to interface with SndObj and
STK libraries. As a result, compiling these libraries for
developers may require some additional overhead
despite the common building environment. One of the
very useful features which would clearly benefit from
additional documentation is an ability to build Universal
Binary (UB) [3] external. STK by default is not UB-
friendly and therefore needs to be built with UB
explicitly enabled. This step, however, requires only a
minor alteration to the STK’s makefile:

CFLAGS += -isysroot
/Developer/SDKs/MacOSX10.4u.sdk -arch ppc
-arch i386

Once flext is compiled, the process of building an
external is relatively straightforward. The flext build
script relies upon the package.txt file which is for the
most part self-explanatory.

flext external uses the building process identical to
that of flext itself. The newly generated external is by
default statically linked against supporting libraries,
making its distribution and/or integration seamless. It is
however worth noting that dynamic linking is also
available and in this case preferred as it minimizes
resource duplication by multiple concurrent instances of
flext objects.

2.1.3. Optimizing Code

Due to message translation inherent to flext, we
expected the platform-agnostic external to introduce
larger CPU footprint than its native counterpart. Our
experiments have shown, however, that munger1~ when
compiled with optimization flags provides practically
identical performance to that of the native munger~
object. For this reason, we treated the anticipated
overhead as negligible.

3. WHAT’S NEW?

The new cross-platform port munger1~ introduces
several enhancements over its precursor, some of which
provide new ways of shaping sound, others that enhance
internal object data and feedback monitoring, and
finally those which are strictly internal overhauls for the
purpose of streamlining the code.

3.1. New Features

munger1~ introduces two new user-controllable features
which have a direct impact on the audio output. One of
them is “discretepan” option (passed into the first
inlet) which can be toggled on or off (default). Unlike
default munger1~’s behaviour which projects the same
grain onto every channel with varied amplitude
(provided the random amplitude deviation set via
“spatialize” command is other than zero),
“discretepan” sends each grain to one particular
channel generating a granular swarm whose full spectral
composition can be discerned only from a location
where all channels are equally perceivable. In this
respect, munger1~ provides spectral diffusion of grains
(albeit with limited control over grain location).

The second feature is a modular number of output
channels and concurrent voices (with arbitrary ceiling
imposed at 64 and 1000 respectively for the sake of
limiting human error and potential memory overflow).
The two options are set via optional 2nd and 3rd
arguments (1st backwards compatible argument is
reserved for internal buffer size). munger1~ is thus
capable of delivering densities beyond 100,000+ grains
per second. This number, however rapidly drops off
with increased grain lengths and proportionally
increased CPU overhead. For this reason it is not
uncommon for munger1~ to overload even the most
contemporary hardware.

Another architectural peculiarity retained from the
original munger~ prevents the external from generating
more grains than there are samples per second. This is
due to the MINSIZE variable which determines absolute
minimum grain size possible. Therefore, the absolute
grain density per second is currently limited only by the
sampling rate and the raw CPU power.

3.2. Object Monitoring and Feedback

munger1~ is designed to provide easy monitoring of
multiple instances within the same session. For this
purpose, munger1~ offers an ability to add unique name
to every instance. This name is consequently reflected
in all of the output generated in the console. Instance
name can be set via optional 4th argument which also
ignores “_” (underscore) entries, interpreting them as
means of extending object’s visual width in PD.

Due to improved, potentially high-volume data
monitoring feedback, munger1~ also offers “verbose”
option which allows for setting the following four
verbosity levels:

0 = all messages (including errors) off
1 = only errors and warnings (default)
2 = all messages
3 = all messages plus number of grains per second

munger1~ with its ever-growing complexity also
includes comprehensive documentation for both
platforms.

3.3. Under the Hood

With its modular voice and channel output, munger1~
offers dynamic memory allocation of its resources. This
is especially important due to its potentially large
memory footprint. This dynamic model is in part
achieved through the vector-based implementation of
larger and more memory demanding data arrays.

munger1~ also has a flext-based method which, when
coupled with external buffer, continually checks for
external buffer’s validity. While generally unlikely, and
mostly limited to human error (i.e. by explicitly erasing
the external buffer while audio engine is turned on),
were it not for the aforesaid implementation, such an
occurrence would inadvertently bring down the entire
application with irreversible data loss.

4. NOTES TO END-USERS

munger1~ has several idiosyncrasies which require end-
user attention. Although it is our aim to address many of
these in object’s future iterations, currently the best way
of dealing with them is through awareness.

When generating a multichannel instance of
munger1~ no audio will be outputted until object is
given a “spatialize” message followed by an array of
numbers reflecting channel-specific amplitude gain and
random amplitude deviation, a.k.a. spread. For instance,
“spatialize 0.1 0.5 0.1 0.5 0.1 0.5”
message to the object would map an amplitude gain of
0.5 and a gain spread of 0.1 to the first three output
channels).

Internal and external buffers can be used
interchangeably via the “buffer <buffer_name>”
message. “buffer” message by itself reverts back to
internal buffer. It is important to note that in Max/MSP,
when external buffer mysteriously disappears or is
explicitly deleted, munger1~ will cease all output until
its buffer is manually set to another buffer (internal or
external). PD in such a situation automatically reverts to
internal buffer.

“maxvoices” message which was used originally to
remap the number of used voices out of a hardwired
maximum of 50 is now deprecated and is retained only
for legacy purposes. Although it can to some extent
optimize the main loop (i.e. in situations when not all
allocated voices are needed, which is controllable via
“voices” command), its impact is negligible. Due to its
backwards compatible implementation, however,
“maxvoices” can have an impact on the number of
available voices. For instance, if an object is initiated
with 70 voices (using object’s optional 3rd argument),
and is given “maxvoices 50” command, “voices”
message will only allow for up to 50 voices. For this
reason, use of “maxvoices” in munger1~ is considered
deprecated and its use is discouraged.

5. REAL-WORLD PERFORMANCE

5.1. Benchmarks

In order to assess object’s performance two benchmarks
have been conducted on Linux, OSX, and Win32
platforms. For this purpose we used the munger1~ help
file with two different settings. Since internal
munger1~’s sample buffer is hardwired to 64 bytes, it
remained constant in all tests. Max/MSP’s I/O Vector
Size was set to 512 while Signal Vector size was 8.
PD’s internal buffer was calculated to the closest
millisecond (namely 512x8/48,000 which yielded
approx. 9 milliseconds). All tests were performed using
internal laptop soundcards. The two scenarios were as
follows:

Test 1: 100ms grain size, 50ms grain size variation, 0
grain separation and grate variation, 8-channel output
with default spatialization values, minsize 1,
delaylength 300, and a sampling rate of 48,000Hz.

Test 2: 0ms (or minimum internally hardwired) grain
size, 0ms grain size variation, 0 grain separation and
grate variation, 8-channel output with default
spatialization values, minsize 1, delaylength 300,
and a sampling rate of 96KHz.

An AMD64 3000+ (1.8GHz) notebook running 32-
bit Windows XP and Wuschel’s ASIO4ALL driver [5]
with 512x4 internal buffering (lower internal latencies
were not reliable even at very low CPU utilization, in
part likely due to the lack of native ASIO support by the
embedded sound chip), in the first test was able to
generate 135 simultaneous voices per sample, bringing
the total number of grains per second to 6,750. The
second test’s reliable ceiling was at 82,500 grains.

A Macbook Pro 1.83GHz with a Core Duo processor
running OSX 10.4.9 in the first test generated 150
simultaneous voices, with a total of 7,500 grains per
second. In the second scenario, the 96,000 sampling rate
upper limit was reached with Max/MSP’s DSP Status
panel showing a peak 79% CPU utilization, suggesting
that output was limited by the sampling rate.

Linux tests were conducted on the same hardware as
Windows, namely a dual-boot AMD64 3000+ laptop.
However, due to the fact that Linux’s default audio
driver (ALSA) [1] performs vastly better in native
hardware sampling rates, instead of dealing with added
buffering of asoundrc-based virtual devices [2], we
opted for conducting tests using 48KHz, the native
sampling rate of the onboard Realtek sound chip. We
expected that this choice would thus generate near
identical CPU overhead induced by the low-latency
operation: since ALSA’s direct access to hardware
introduces virtually no additional buffering overhead, its
performance was deemed equivalent (or as equivalent as
possible) to that of an ASIO and Core Audio drivers on
Windows and Apple platforms respectively. For this test

PD was run in realtime mode (-rt flag) with pd-
watchdog reniced to ensure elevated priority in the case
of CPU overload. Linux’s measured grain density in the
first test was identical to that of its Windows
counterpart suggesting that flext, STK, and
consequently munger1~ enjoy equivalent optimizations
across platforms. The data produced by the second test,
was generated using 48KHz sampling rate and is
provided here purely for referential purposes as it lacks
uniform (or near uniform) testing conditions.
Nonetheless, ensuing data showed PD plateau at 48,000
grains per second with approx. 50% CPU utilization,
suggesting equivalency to that of its Windows
counterpart, and once again reaffirming external’s CPU-
footprint uniformity across platforms.

As can be observed from the aforesaid benchmarks,
munger1~ exhibits near identical platform-agnostic
performance. The supporting data also suggests that
munger1~ could potentially benefit from multithreaded
optimizations which would warrant quantum leaps in
performance on dual-core CPUs available in the
Macbook Pro and other modern portables. Due to the
absence of the aforesaid multithreaded design, its
performance appears to be strikingly proportional to the
CPU clock speeds. Preliminary tests have also shown
that CPU footprint increases with a larger number of
output channels. Therefore it is not unreasonable to
expect attainability of greater densities using stereo
output, than those presented above.

5.2. Art

Since its milestone 1.0.0 release munger1~ has been
utilized in at least two performance-based multimedia
creations authored by Ivica Ico Bukvic, both of which
are covered here in order to provide but a hint of its
real-world performance. One of them is Pandora
interactive multimedia work for color-based gesture-
tracking hyperinstrument, interactive visuals, voice,
laptop and a quad output. Pandora relies heavily upon
munger1~ in order to generate sustained reverb-like
textures whose amplitudes are in part controlled via
grain density, as well as produce dense spectral layers
built from the captured vocal material and its concurrent
pitch, length, and amplitude permutations. Given that
the majority of Pandora’s CPU overhead stems from
real-time video processing, 3D rendering, and motion
tracking, only one instance of munger1~ was used.
Perhaps more importantly this one instance has proven
more than adequate in generating the aforesaid dense
aural textures. Pandora was premiered in April 2007 as
part of the debut DISIS event in Virginia, US. An
audio-visual studio rendering of Pandora’s performance
is available at http://ico.bukvic.net/Video/.

Second work titled Soul for baritone, audience,
laptop, and quad output which was also premiered in
April 2007 relies almost exclusively upon munger1~’s
diverse signal processing potential as well as its
newfound ability to generate dense real-time granular
textures. Inspired by Emily Dickinson’s poetry, the

work calls for three concurrent instances of munger1~
with discrete buffers. Each instance is connected to a
simplified on-screen version of the gesture interface
utilized in Pandora and is used at specific points
throughout the piece. The work’s closure reengages all
three instances with their respective buffers intact in
order to produce a dramatic cumulative effect,
climaxing in a timbrally rich wall of sound. This
particular gesture utilizes 120 (40 per instance)
concurrent grains per sample. In addition to DSP
techniques inherited from Pandora’s interface, Soul
also deals with a more subtle pitch detuning which is
associated with ideas and motives inherent to the
poetry. A recording of Soul’s premiere featuring
baritone Dr. Theodore Sipes is available at
http://ico.bukvic.net/Audio/.

6. FUTURE DEVELOPMENT

While munger1~ is already a stable, production-ready
external, its real-world use has identified several
potentially useful additions. As a result, we have
generated a roadmap with an aim to implement these in
the near future. The following fixes are listed according
to their priority.

6.1. ADSR Overhaul

Although current ADSR envelope implementation
generates default values for all channels and its grain-
specific settings are alterable via “oneshot” events,
currently there is no facility which would alter ADSR
shape globally nor revert individual voice’s ADSR
“oneshot” alterations back to the global setting. There
is also a consideration to enhance the ADSR model to
include more than just four points inherent to the
classical ADSR model. We aim to address the aforesaid
deficiencies with the ADSR overhaul, including an
“adsr” message which will provide the aforesaid global
envelope alteration.

6.2. Spectral and Duration-Based Diffusion

One of the new features is expansion of
“discretepan” paradigm. In addition to the existing
two methods of spatialization, we will also provide the
following two modes:

Mode 2 will generate spectral diffusion based on pitch

Mode 3 will focus on spatializing all content according
to the data received from a likely new inlet which will
take two values: current grain swarm center channel
(provided as a float-point virtual source), and the grain
swarm spread surrounding the aforesaid center.

Similar to the aforesaid mode 2, a “durationpan”
and “amplitudepan” will be implemented to spatialize
grains according to their duration and amplitude
respectively.

6.3. Built-in Initialization of Multichannel Diffusion

As reported in chapter 4, munger1~ when instantiated as
a multichannel object will not output any audio until it
receives “spatialize” command. Its future iterations
will provide safe default spatialization values in order to
enable immediate audio output.

6.4. Absolute Minimum Grain Size

In order to attain greater resolution in the main DSP
loop we will assess decreasing the absolute minimum
grain size and its impact on the aural as well as CPU
output.

6.5. Multithreaded model and Vectorization of Code

Series of tests will be conducted to assess feasibility of a
multithreaded design that will be capable of utilizing
advantages of multi-core CPUs. This, coupled with code
vectorization via SIMD [23] instructions should provide
a considerable boost in performance. Currently there are
no plans to pursue Altivec optimizations.

7. OBTAINING munger1~

munger1~ is a free open-source GPL-licensed external
which is currently downloadable from
http://ico.bukvic.net/Max/munger1~_latest.
tar.gz. In its latest version 1.3.1 released in May
2007, it comes with source, build packages for gcc and
MSVC environments, help files, and prebuilt binaries
for Max-Win32-i386, Pd-Linux-i386, and Max-Mac-UB.
As always, contributions to code as well as submission
of pre-packaged binaries for other platforms are most
welcome.

8. CONCLUSION

munger1~ is an open-source versatile, scalable, and
platform-agnostic real-time granular synthesis external
for Max/MSP and PD. Currently limited only by the raw
CPU power, barring any fundamental API changes, it is
future-proof while warranting minimal increase in the
code maintenance overhead over its Max/MSP-native
precursor.

9. ACKNOWLEDGMENTS

Special thanks go to Dan Trueman and R. Luke DuBois
for making and open-sourcing this great external,
Thomas Grill for the incredibly useful and vastly
underused flext layer, Perry R. Cook and Garry P.
Scavone for STK, and obviously the entire PD and
Max/MSP communities for making these tools arguably
the most modular and versatile creative multimedia
environments available today.

10. REFERENCES

[1] ALSA, "Advanced Linux Sound Architecture",
Cited 2007; Available from http://www.alsa-
project.org.

[2] ALSA, "asoundrc file", Cited 2007; Available
from http://www.alsa-project.org/alsa-doc/doc-
php/asoundrc.php.

[3] Apple, “Universal Binary Programming
Guidelines, Second Edition”, Jan. 2007, Cited
2007; Available from
http://developer.apple.com/documentation/MacOSX
/Conceptual/universal_binary/universal_binary.pdf.

[4] Arslan, B., Brouse, A., Castet,J, Filatriau,J.J.,
Lehembre,R. Noirhomme, Q. and Simon, C.
"Biologically-driven musical instrument,"
Proceedings of eNTERFACE'05 Summer work-
shop on multimodal interfaces, Mons,
Belgium, 2005.

[5] ASIO4ALL, "Universal ASIO Driver For
WDM Audio", Cited 2007; Available from
http://www.asio4all.com.

[6] Bulka, D. and Mayhew, D. Efficient C++:
Performance Programming Techniques,
Addison-Wesley Professional, 1st edition,
1999.

[7] Cadiz, R. and Kendall, G. "Fuzzy logic control
toolkit: real-time fuzzy control for Max/MSP
and Pd", Proceedings of International
Computer Music Conference, New Orleans,
Lousiana, USA, 2006.

[8] Cook, P. R. and Scavone, G. “The Synthesis
Toolkit (STK).” Proceedings of the
International Computer Music Conference,
Beijing, China, 1999.

[9] Cycling ’74. “Max/MSP: A graphical
programming environment for music, audio,
and multimedia”, Cited 2007; Available from
http://www.cycling74.com/products/maxmsp.

[10] Cycling ’74. “Jitter: A Brilliant Collection of
Video, Matrix, and 3D Graphics Objects for
Max”, Cited 2007; Available from
http://www.cycling74.com/products/jitter.

[11] Cygwin, “Cygwin”, Cited 2007; Available
from http://www.cygwin.com.

[12] Danks, M. “Real-time image and video
processing in GEM.” Proceedings of the
International Computer Music Conference,
Thessaloniki, 1997.

[13] DISIS, “Digital Interactive Sound and
Intermedia Studio”, Cited 2007; Available
from http://disis.music.vt.edu.

[14] Gabor, D. "Acoustical Quanta and the Theory
of Hearing." Nature 159 (4044): 591-594, 1947.

[15] GNU, “General Public License (GPL)”, Cited
2007; Available from
http://www.gnu.org/copyleft/gpl.html.

[16] Grill, T. "flext - C++ layer for cross-platform
development of Max/MSP and pd externals",
Cited 2007; Available from
http://grrrr.org/ext/flext/.

[17] Lippman, S. B. and Lajoie, J. “C++ Primer (3rd
Edition)”, Addison-Wesley Professional, 1998.

[18] Lyon, E. “FFTease: A collection of Max/MSP
objects implementing various forms of spectral
sound processing”, Cited 2007; Available
from:
http://www.sarc.qub.ac.uk/~elyon/LyonSoftware/M
axMSP/FFTease.

[19] Microsoft, “Visual C++ Developer Center”,
Cited 2007; Available from
http://msdn.microsoft.com/visualc.

[20] Propellerhead Software, “Reason,”, 2003,
Cited 2007; Available from
http://www.propellerheads.se/download/files/whatsn
ew_rsn25.pdf.

[21] Puckette, M. "Pure Data." Proceedings of
International Computer Music Conference.
San Francisco, 1996.

[22] Pure Data. “Sourceforge.net: Pure Data
Computer Music System.” 2007, Cited 2007;
Available from
http://sourceforge.net/projects/pure-data.

[23] Stewart, J. "An Investigation of SIMD
instruction sets", 2005, Cited 2007; Available
from http://noisymime.org/blogimages/SIMD.pdf.

[24] The Synthesis ToolKit in C++ (STK), "STK
ADSR envelope class", Cited 2007; Available
from
http://ccrma.stanford.edu/software/stk/classADSR.ht
ml.

[25] Truax, B. “Real-time granular synthesis with a
digital signal processor,” Computer Music
Journal, vol. 12, no. 2, pp. 14-26, 1988.

[26] Trueman, D. and DuBois, R.L. “PeRColate”,
Cited 2007; Available from
http://music.columbia.edu/PeRColate.

[27] Trueman, D. and DuBois R. L., PeRColate
manual, 2001, Cited 2007; Available from
http://www.music.columbia.edu/PeRColate/PeRCol
ate_manual.pdf, 2001.

[28] Xenakis, I. Formalized Music: Thought and
mathematics in composition, Indiana
University Press, 1971.

