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ABSTRACT 

munger1~ is a new and enhanced version of a powerful 
Max/MSP real-time granular synthesis external found in 
the PeRColate library. Apart from added features and 
optimizations, including ability to generate theoretically 
unlimited number of grains per second using real-time 
input, munger1~ also offers GPL-licensed platform-
transparent code using the flext library. Thus, munger1~ 
is compatible with both Max/MSP and Pure-Data 
without any alterations to the source. Due to object’s 
complexity, as well as a significantly less common 
porting path from the Max/MSP/C to a platform-
agnostic C++/flext, this project has resulted in a number 
of improvements in flext build scripts and supporting 
documentation. It has also generated an invaluable list 
of caveats which are presented in this paper in hope to 
foster more platform-agnostic object design and porting 
efforts. Since its release, munger1~ has been featured in 
two interactive multimedia creations whose technical 
and artistic impact is also addressed in this paper. 

1. INTRODUCTION 

Originally introduced in 1947 as a theory by Dennis 
Gabor [14], sonified by Iannis Xenakis in 1971 [28], 
and made real-time by Barry Truax in 1988 [25], 
granular synthesis is by no means a new technology. 
Yet, in part due to its inherent versatility, granular 
synthesis remains a prominent technique in 
contemporary digital audio vocabulary. Its recent 
adoption into the mainstream audio software, such as 
Propellerhead’s introduction of Maelstrom synthesizer 
in Reason 2.0 [20], certainly attests to this ongoing 
trend. 

Late 1990s have introduced proliferation of portable 
computing, accessible DSP-oriented programming 
languages, and the ensuing popularity of audio-visual 
environments geared towards interactivity, most notably 
PD/Gem [21, 12] and Max/MSP/Jitter [10]. As a result, 
there was a growing need for an integrated real-time 
granular synthesis object which would offer balance 
between versatility, and ease of use. Although only a 
peripheral object of the PeRColate library originally 
authored by Dan Trueman and R. Luke DuBios [4, 26, 
27], munger~ external to this day remains arguably one 
of the most powerful granular synthesis objects for 
Max/MSP. PD community quickly realizing the 
importance of the PeRColate collection had made a 
genuine effort towards a native port. As a result, in 2002 

Olaf Matthes had generated a near complete Pure-Data 
conversion. Unfortunately, in part due to ongoing 
changes in gcc, munger~’s ported code had soon failed 
to operate properly, maxing out the CPU usage in a 
seemingly random fashion and ultimately producing 
garbled and therefore unusable audio output. Another 
unfortunate shortcoming of Matthes’s formidable efforts 
was the fact that original authors of the PeRColate 
library had no resources and/or interest in maintaining 
two concurrent code bases, since their work revolved 
predominantly around the Max/MSP platform. More so, 
multiple #ifdefs in Olaf’s code had made the source 
difficult to maintain. For these reasons, Matthes’s 
contributions had fallen by the wayside, leaving PD 
community without an ability to tap into the vast 
potential of the munger~ object. 

In 2007, after having an opportunity to attain deeper 
understanding of the flext library [16], an effort was 
made at Virginia Tech’s newly established Digital 
Interactive Sound and Intermedia Studios (DISIS) [13] 
to port munger~ to the flext framework and thus make 
the object platform-transparent with practically no 
added overhead to its code maintenance. Several steps 
had to be taken before port could commence, one of 
them being permission to redistribute source under a 
flext-compatible license, in this case GNU General 
Public License [15]. After several days of dealing 
mostly with platform-specific idiosyncrasies which were 
ironically tied to environment variables otherwise 
considered to be platform agnostic, munger1~ 1.0.0 was 
released, offering new features and full backwards 
compatibility. Since its initial release in March 2007, 
the object has seen several updates. Latest version 1.3.1 
provides fully modular memory allocation model, code 
optimizations, and virtually unlimited number of real-
time grains per second which are restricted only by the 
raw CPU power. 

2. PORTING CODE OUTSIDE THE BEATEN 
PATH 

Although flext library is a very stable and mature cross-
platform framework, its adoption has been associated 
predominantly with the PD community. As a result, 
apart from few exceptions (i.e. fftease [18] port initiated 
by the flext author Thomas Grill) most of the porting 
efforts have been either from PD to flext, or were new 
objects designed entirely within the flext environment 
(such as Thomas Grill’s xsample, pool, py, etc., Tim 
Blechman’s chaos and tbext, Frank Barknecht’s fluid~, 



  
 
syncgrain~, etc., all of which are a part of the PD/flext 
CVS repository [22]). Consequently, documentation 
regarding porting objects from the Max/MSP C-based 
source to the flext C++ environment had been sparse. 

munger~ is a relatively complex external with its 
own concurrently moving and rotating buffer as well as 
ability to interface with external buffers. Its latest 
version also relies upon the Synthesis Toolkit (STK) in 
order to provide ADSR [24] grain envelope. munger~ in 
and of itself provides up to sixteen outputs, ability to 
specify grain content by manually traversing the current 
buffer, accessing random points from the buffer, as well 
as read the same in different directions. The object 
allows for up to fifty simultaneous grains per sample. 
The resulting absolute grain density per second depends 
upon grain separation and rate variation (1st and 2nd 
inlets respectively), individual grain size and size 
variation (3rd and 4th inlets respectively), absolute 
minimum allowable grain size (“minsize” message), 
and the “delaylength” message (whose size reflects 
the size of the moving sub-buffer and consequently 
largest possible grain). Grains can be transposed using 
random as well as pitch-based transpositions. Each grain 
is also spatialized using customizable random deviation. 
Unlike stereo spatialization which has its own dedicated 
inlet, multichannel diffusion requires “spatialize” 
message entry into the leftmost inlet in order to specify 
random amplitude deviation and the default channel 
amplitude gain. 

As can be observed from its features, munger~ has 
proven to be a formidable test of flext’s robustness. 
Although the initial port was relatively quick, its clean-
up and testing was encumbered by slowdowns 
stemming from the platform-specific compiler and 
engine peculiarities which for the most part fell outside 
flext’s domain. 

2.1. Unexpected Caveats 

Apart from the expected and relatively well documented 
API alterations which were necessary for the code to 
conform to the flext framework and thus become 
transparent to both Max/MSP and PD], there were 
several unexpected considerations whose scope will 
likely have a universal impact in other similar 
development/porting efforts. They are listed below. 

2.1.1. From C to C++ 

Apart from endless and in most cases dubious argument 
which programming language offers better performance, 
C++ as an object-oriented environment provides 
superior scalability and better memory management 
[17]. Although the porting effort was relatively 
straightforward, compiler idiosyncrasies had proven to 
be the most time-consuming bugs. 

One such idiosyncrasy is related to the fact that 
Microsoft Visual C++ (a.k.a. MSVC) [19], rather than 
Cygwin [11] environment was used on the Windows 
platform. rand() function which is often critical 

component of algorithmic systems produces different 
value range in MSVC (namely 0-32767) from that of 
gcc (used by Linux and OSX). As a result an additional 
#ifdef was necessary to standardize value range of the 
original munger~ object across platforms: 

 
#ifndef __GNUC__ 
#define RANDOM (rand()) 
#else 
#define RANDOM (random()%32768) 
#endif 

2.1.2. flext, SndObj, and STK 

flext has an inherent ability to interface with SndObj and 
STK libraries. As a result, compiling these libraries for 
developers may require some additional overhead 
despite the common building environment. One of the 
very useful features which would clearly benefit from 
additional documentation is an ability to build Universal 
Binary (UB) [3] external. STK by default is not UB-
friendly and therefore needs to be built with UB 
explicitly enabled. This step, however, requires only a 
minor alteration to the STK’s makefile: 
 
CFLAGS += -isysroot 
/Developer/SDKs/MacOSX10.4u.sdk -arch ppc 
-arch i386 
 

Once flext is compiled, the process of building an 
external is relatively straightforward. The flext build 
script relies upon the package.txt file which is for the 
most part self-explanatory. 

flext external uses the building process identical to 
that of flext itself. The newly generated external is by 
default statically linked against supporting libraries, 
making its distribution and/or integration seamless. It is 
however worth noting that dynamic linking is also 
available and in this case preferred as it minimizes 
resource duplication by multiple concurrent instances of 
flext objects. 

2.1.3. Optimizing Code 

Due to message translation inherent to flext, we 
expected the platform-agnostic external to introduce 
larger CPU footprint than its native counterpart. Our 
experiments have shown, however, that munger1~ when 
compiled with optimization flags provides practically 
identical performance to that of the native munger~ 
object. For this reason, we treated the anticipated 
overhead as negligible. 

3. WHAT’S NEW? 

The new cross-platform port munger1~ introduces 
several enhancements over its precursor, some of which 
provide new ways of shaping sound, others that enhance 
internal object data and feedback monitoring, and 
finally those which are strictly internal overhauls for the 
purpose of streamlining the code. 



  
 
 

3.1. New Features 

munger1~ introduces two new user-controllable features 
which have a direct impact on the audio output. One of 
them is “discretepan” option (passed into the first 
inlet) which can be toggled on or off (default). Unlike 
default munger1~’s behaviour which projects the same 
grain onto every channel with varied amplitude 
(provided the random amplitude deviation set via 
“spatialize” command is other than zero), 
“discretepan” sends each grain to one particular 
channel generating a granular swarm whose full spectral 
composition can be discerned only from a location 
where all channels are equally perceivable. In this 
respect, munger1~ provides spectral diffusion of grains 
(albeit with limited control over grain location). 

The second feature is a modular number of output 
channels and concurrent voices (with arbitrary ceiling 
imposed at 64 and 1000 respectively for the sake of 
limiting human error and potential memory overflow). 
The two options are set via optional 2nd and 3rd 
arguments (1st backwards compatible argument is 
reserved for internal buffer size). munger1~ is thus 
capable of delivering densities beyond 100,000+ grains 
per second. This number, however rapidly drops off 
with increased grain lengths and proportionally 
increased CPU overhead. For this reason it is not 
uncommon for munger1~ to overload even the most 
contemporary hardware. 

Another architectural peculiarity retained from the 
original munger~ prevents the external from generating 
more grains than there are samples per second. This is 
due to the MINSIZE variable which determines absolute 
minimum grain size possible. Therefore, the absolute 
grain density per second is currently limited only by the 
sampling rate and the raw CPU power. 

3.2. Object Monitoring and Feedback 

munger1~ is designed to provide easy monitoring of 
multiple instances within the same session. For this 
purpose, munger1~ offers an ability to add unique name 
to every instance. This name is consequently reflected 
in all of the output generated in the console. Instance 
name can be set via optional 4th argument which also 
ignores “_” (underscore) entries, interpreting them as 
means of extending object’s visual width in PD. 

Due to improved, potentially high-volume data 
monitoring feedback, munger1~ also offers “verbose” 
option which allows for setting the following four 
verbosity levels: 
 
0 = all messages (including errors) off 
1 = only errors and warnings (default) 
2 = all messages 
3 = all messages plus number of grains per second 
 

munger1~ with its ever-growing complexity also 
includes comprehensive documentation for both 
platforms. 

3.3. Under the Hood 

With its modular voice and channel output, munger1~ 
offers dynamic memory allocation of its resources. This 
is especially important due to its potentially large 
memory footprint. This dynamic model is in part 
achieved through the vector-based implementation of 
larger and more memory demanding data arrays. 

munger1~ also has a flext-based method which, when 
coupled with external buffer, continually checks for 
external buffer’s validity. While generally unlikely, and 
mostly limited to human error (i.e. by explicitly erasing 
the external buffer while audio engine is turned on), 
were it not for the aforesaid implementation, such an 
occurrence would inadvertently bring down the entire 
application with irreversible data loss. 

4. NOTES TO END-USERS 

munger1~ has several idiosyncrasies which require end-
user attention. Although it is our aim to address many of 
these in object’s future iterations, currently the best way 
of dealing with them is through awareness. 

When generating a multichannel instance of 
munger1~ no audio will be outputted until object is 
given a “spatialize” message followed by an array of 
numbers reflecting channel-specific amplitude gain and 
random amplitude deviation, a.k.a. spread. For instance, 
“spatialize 0.1 0.5 0.1 0.5 0.1 0.5” 
message to the object would map an amplitude gain of 
0.5 and a gain spread of 0.1 to the first three output 
channels). 

Internal and external buffers can be used 
interchangeably via the “buffer <buffer_name>” 
message. “buffer” message by itself reverts back to 
internal buffer. It is important to note that in Max/MSP, 
when external buffer mysteriously disappears or is 
explicitly deleted, munger1~ will cease all output until 
its buffer is manually set to another buffer (internal or 
external). PD in such a situation automatically reverts to 
internal buffer. 

“maxvoices” message which was used originally to 
remap the number of used voices out of a hardwired 
maximum of 50 is now deprecated and is retained only 
for legacy purposes. Although it can to some extent 
optimize the main loop (i.e. in situations when not all 
allocated voices are needed, which is controllable via 
“voices” command), its impact is negligible. Due to its 
backwards compatible implementation, however, 
“maxvoices” can have an impact on the number of 
available voices. For instance, if an object is initiated 
with 70 voices (using object’s optional 3rd argument), 
and is given “maxvoices 50” command, “voices” 
message will only allow for up to 50 voices. For this 
reason, use of “maxvoices” in munger1~ is considered 
deprecated and its use is discouraged. 



  
 

5. REAL-WORLD PERFORMANCE 

5.1. Benchmarks 

In order to assess object’s performance two benchmarks 
have been conducted on Linux, OSX, and Win32 
platforms. For this purpose we used the munger1~ help 
file with two different settings. Since internal 
munger1~’s sample buffer is hardwired to 64 bytes, it 
remained constant in all tests. Max/MSP’s I/O Vector 
Size was set to 512 while Signal Vector size was 8. 
PD’s internal buffer was calculated to the closest 
millisecond (namely 512x8/48,000 which yielded 
approx. 9 milliseconds). All tests were performed using 
internal laptop soundcards. The two scenarios were as 
follows: 
 
Test 1: 100ms grain size, 50ms grain size variation, 0 
grain separation and grate variation, 8-channel output 
with default spatialization values, minsize 1, 
delaylength 300, and a sampling rate of 48,000Hz. 
 
Test 2: 0ms (or minimum internally hardwired) grain 
size, 0ms grain size variation, 0 grain separation and 
grate variation, 8-channel output with default 
spatialization values, minsize 1, delaylength 300, 
and a sampling rate of 96KHz. 
 

An AMD64 3000+ (1.8GHz) notebook running 32-
bit Windows XP and Wuschel’s ASIO4ALL driver [5] 
with 512x4 internal buffering (lower internal latencies 
were not reliable even at very low CPU utilization, in 
part likely due to the lack of native ASIO support by the 
embedded sound chip), in the first test was able to 
generate 135 simultaneous voices per sample, bringing 
the total number of grains per second to 6,750. The 
second test’s reliable ceiling was at 82,500 grains. 

A Macbook Pro 1.83GHz with a Core Duo processor 
running OSX 10.4.9 in the first test generated 150 
simultaneous voices, with a total of 7,500 grains per 
second. In the second scenario, the 96,000 sampling rate 
upper limit was reached with Max/MSP’s DSP Status 
panel showing a peak 79% CPU utilization, suggesting 
that output was limited by the sampling rate. 

Linux tests were conducted on the same hardware as 
Windows, namely a dual-boot AMD64 3000+ laptop. 
However, due to the fact that Linux’s default audio 
driver (ALSA) [1] performs vastly better in native 
hardware sampling rates, instead of dealing with added 
buffering of asoundrc-based virtual devices [2], we 
opted for conducting tests using 48KHz, the native 
sampling rate of the onboard Realtek sound chip. We 
expected that this choice would thus generate near 
identical CPU overhead induced by the low-latency 
operation: since ALSA’s direct access to hardware 
introduces virtually no additional buffering overhead, its 
performance was deemed equivalent (or as equivalent as 
possible) to that of an ASIO and Core Audio drivers on 
Windows and Apple platforms respectively. For this test 

PD was run in realtime mode (-rt flag) with pd-
watchdog reniced to ensure elevated priority in the case 
of CPU overload. Linux’s measured grain density in the 
first test was identical to that of its Windows 
counterpart suggesting that flext, STK, and 
consequently munger1~ enjoy equivalent optimizations 
across platforms. The data produced by the second test, 
was generated using 48KHz sampling rate and is 
provided here purely for referential purposes as it lacks 
uniform (or near uniform) testing conditions. 
Nonetheless, ensuing data showed PD plateau at 48,000 
grains per second with approx. 50% CPU utilization, 
suggesting equivalency to that of its Windows 
counterpart, and once again reaffirming external’s CPU-
footprint uniformity across platforms. 

As can be observed from the aforesaid benchmarks, 
munger1~ exhibits near identical platform-agnostic 
performance. The supporting data also suggests that 
munger1~ could potentially benefit from multithreaded 
optimizations which would warrant quantum leaps in 
performance on dual-core CPUs available in the 
Macbook Pro and other modern portables. Due to the 
absence of the aforesaid multithreaded design, its 
performance appears to be strikingly proportional to the 
CPU clock speeds. Preliminary tests have also shown 
that CPU footprint increases with a larger number of 
output channels. Therefore it is not unreasonable to 
expect attainability of greater densities using stereo 
output, than those presented above. 

5.2. Art 

Since its milestone 1.0.0 release munger1~ has been 
utilized in at least two performance-based multimedia 
creations authored by Ivica Ico Bukvic, both of which 
are covered here in order to provide but a hint of its 
real-world performance. One of them is Pandora 
interactive multimedia work for color-based gesture-
tracking hyperinstrument, interactive visuals, voice, 
laptop and a quad output. Pandora relies heavily upon 
munger1~ in order to generate sustained reverb-like 
textures whose amplitudes are in part controlled via 
grain density, as well as produce dense spectral layers 
built from the captured vocal material and its concurrent 
pitch, length, and amplitude permutations. Given that 
the majority of Pandora’s CPU overhead stems from 
real-time video processing, 3D rendering, and motion 
tracking, only one instance of munger1~ was used. 
Perhaps more importantly this one instance has proven 
more than adequate in generating the aforesaid dense 
aural textures. Pandora was premiered in April 2007 as 
part of the debut DISIS event in Virginia, US. An 
audio-visual studio rendering of Pandora’s performance 
is available at http://ico.bukvic.net/Video/. 

Second work titled Soul for baritone, audience, 
laptop, and quad output which was also premiered in 
April 2007 relies almost exclusively upon munger1~’s 
diverse signal processing potential as well as its 
newfound ability to generate dense real-time granular 
textures. Inspired by Emily Dickinson’s poetry, the 



  
 
work calls for three concurrent instances of munger1~ 
with discrete buffers. Each instance is connected to a 
simplified on-screen version of the gesture interface 
utilized in Pandora and is used at specific points 
throughout the piece. The work’s closure reengages all 
three instances with their respective buffers intact in 
order to produce a dramatic cumulative effect, 
climaxing in a timbrally rich wall of sound. This 
particular gesture utilizes 120 (40 per instance) 
concurrent grains per sample. In addition to DSP 
techniques inherited from Pandora’s interface, Soul 
also deals with a more subtle pitch detuning which is 
associated with ideas and motives inherent to the 
poetry. A recording of Soul’s premiere featuring 
baritone Dr. Theodore Sipes is available at 
http://ico.bukvic.net/Audio/. 

6. FUTURE DEVELOPMENT 

While munger1~ is already a stable, production-ready 
external, its real-world use has identified several 
potentially useful additions. As a result, we have 
generated a roadmap with an aim to implement these in 
the near future. The following fixes are listed according 
to their priority. 

6.1. ADSR Overhaul 

Although current ADSR envelope implementation 
generates default values for all channels and its grain-
specific settings are alterable via “oneshot” events, 
currently there is no facility which would alter ADSR 
shape globally nor revert individual voice’s ADSR 
“oneshot” alterations back to the global setting. There 
is also a consideration to enhance the ADSR model to 
include more than just four points inherent to the 
classical ADSR model. We aim to address the aforesaid 
deficiencies with the ADSR overhaul, including an 
“adsr” message which will provide the aforesaid global 
envelope alteration. 

6.2. Spectral and Duration-Based Diffusion 

One of the new features is expansion of 
“discretepan” paradigm. In addition to the existing 
two methods of spatialization, we will also provide the 
following two modes: 
 
Mode 2 will generate spectral diffusion based on pitch 
 
Mode 3 will focus on spatializing all content according 
to the data received from a likely new inlet which will 
take two values: current grain swarm center channel 
(provided as a float-point virtual source), and the grain 
swarm spread surrounding the aforesaid center. 
 

Similar to the aforesaid mode 2, a “durationpan” 
and “amplitudepan” will be implemented to spatialize 
grains according to their duration and amplitude 
respectively. 

6.3. Built-in Initialization of Multichannel Diffusion 

As reported in chapter 4, munger1~ when instantiated as 
a multichannel object will not output any audio until it 
receives “spatialize” command. Its future iterations 
will provide safe default spatialization values in order to 
enable immediate audio output. 

6.4. Absolute Minimum Grain Size 

In order to attain greater resolution in the main DSP 
loop we will assess decreasing the absolute minimum 
grain size and its impact on the aural as well as CPU 
output. 

6.5. Multithreaded model and Vectorization of Code 

Series of tests will be conducted to assess feasibility of a 
multithreaded design that will be capable of utilizing 
advantages of multi-core CPUs. This, coupled with code 
vectorization via SIMD [23] instructions should provide 
a considerable boost in performance. Currently there are 
no plans to pursue Altivec optimizations. 

7. OBTAINING munger1~ 

munger1~ is a free open-source GPL-licensed external 
which is currently downloadable from 
http://ico.bukvic.net/Max/munger1~_latest.
tar.gz. In its latest version 1.3.1 released in May 
2007, it comes with source, build packages for gcc and 
MSVC environments, help files, and prebuilt binaries 
for Max-Win32-i386, Pd-Linux-i386, and Max-Mac-UB. 
As always, contributions to code as well as submission 
of pre-packaged binaries for other platforms are most 
welcome. 

8. CONCLUSION 

munger1~ is an open-source versatile, scalable, and 
platform-agnostic real-time granular synthesis external 
for Max/MSP and PD. Currently limited only by the raw 
CPU power, barring any fundamental API changes, it is 
future-proof while warranting minimal increase in the 
code maintenance overhead over its Max/MSP-native 
precursor. 
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